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Corrections to Stokes’ law are determined to first order in alb and a l h  for a sphere 
of radius a in a one-dimensional array of identical spheres having centre-to- 
centre-spacing b and translating a distance h from a no-slip wall. When hlb is small 
the drag is greater than that given by Stokes’ law ; as h / b  increases, the drag generally 
decreases and becomes less than that given by Stokes’ law. Stability of the array is 
examined. Motion along the line of centres is found to be stable, but the other two 
motions are unstable. The wall is a stabilizing influence when motion is toward the 
wall and a destabilizing influence when motion is away from the wall. For motion 
parallel to the wall, the presence of the wall shifts the region of maximum instability 
to smaller wavelengths. Crowley’s results, which neglect any influence of the wall, 
are approached for h/b  greater than about 5. 

1. Introduction 
Movement of a swarm of particles through a fluid occurs in many engineering and 

natural processes. The velocity of sedimentation usually decreases markedly from 
that of an isolated particle as the particle concentration increases. This phenomenon, 
known as hindered settling, is explained qualitatively by the fact that upward-moving 
fluid displaced by the downward-moving particles results in a larger relative velocity 
and larger drag force. Various theoretical models have been proposed to give the 
dependence of settling velocity on particle concentration. Happel & Brenner (1965) 
thoroughly reviewed the earlier work of Burgers, Brinkman, Happel, Kuwabara, 
Hasimoto and others. All of these theories require the particles to be distributed more 
or less uniformly throughout the fluid. An approach which first requires the 
determination of the probability distribution for the separation of two particles has 
been given by Batchelor (1972). 

If the spatial distribution of particles is altered by aggregation, clustering or 
clumping, then the velocity of sedimentation can be significantly increased. This 
increase is explained qualitatively by the onset of large-scale convective motions (free 
convection or sedimentary flow) arising from regions of effective fluid density 
different from the suspension as a whole because of different local particle concent- 
rations. Especially dramatic effects have been observed by Weiland (1982), who found 
that a small concentration of buoyant particles accelerated clustering and greatly 
enhanced the rate of settling of heavier particles. 

A theory of cluster formation for initially uniform suspensions could be of 
considerable value. Such a theory might suggest conditions that promote clustering 
and more rapid settling when that is a desired goal. The theory might suggest 
conditions that inhibit clustering and result in deposits of controlled geometry when 
that is a desired goal. Although the hydrodynamic conditions are very different from 
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low-Reynolds-number sedimentation, such a theory might provide some insight into 
bubble formation in fluidized beds. 

The closest approach to such a theory has been developed by Crowley (1971). 
Crowley studied the instability of a one-dimensional periodic array of widely spaced 
identical particles sedimenting with velocity W in a direction normal to the line of 
centres through an otherwise infinite volume of fluid. Hydrodynamic interactions 
between the particles were taken into account to the first order in alb, where a is the 
radius of the spheres and b is the centre-to-centre spacing between adjacent spheres. 
Crowley found the array to be unstable to infinitesimal perturbations in position and 
velocity. A wave consisting of six particles gives the maximum growth rate when 
hydrodynamic interactions between all the particles are considered. If only nearest- 
neighbour interactions are taken into account, then the wave of maximum growth 
rate consists of four particles. 

Crowley did not attempt to compute the undisturbed sedimentation velocity W 
of the array. In fact, his approach is not capable of giving this velocity. The reason 
for this is that the fluid velocity induced by the motion of a particle a t  low Reynolds 
number decays as the inverse first power of distance at  remote positions from that 
particle. Calculation of the net hydrodynamic force on a given particle arising from 
the fluid motions induced by the movements of N other particles requires evaluation 
of a sum of the form 67cpaW(3a/2b)Z$-,n-' (see e.g. equation (10) of this paper). 
Such sums diverge as N becomes infinite. In order to compute a finite sedimentation 
velocity for an infinite array of particles, it is necessary to take into account inertia 
of the fluid in the same way that Stokes' paradox for flow past a cylinder is resolved, 
or, for zero-Reynolds-number flows, to take into account a bounding surface. If there 
is a bounding surface, fluid motions induced by the movement of the particles are 
reflected from the surface. The reflected flows cause a force on a given particle of 
opposite sign but of comparable magnitude to the direct hydrodynamic interactions. 
The difference in these two divergent sums as N becomes infinite approaches a Anite 
value. We have evaluated such sums, and give results in $3 of this paper for the 
first-order corrections to Stokes' law for a one-dimensional array translating in the 
presence of a wall. 

As mentioned above, Crowley did not allow for a reflecting wall (or for fluid inertia) 
and therefore could not compute a finite sedimentation velocity. His approach must 
assume that a finite undisturbed sedimentation velocity exists and that the reflected 
flow is unimportant in determining the stability of the array. In  $4 of this paper we 
examine the stability of a one-dimensional array in the presence of a wall, including 
the effect of the reflected flows. We find that Crowley's results are approached for 
values of hlb greater than about 5 ,  where h is the distance of the array from the wall 
and b is the particle-to-particle spacing. Crowley (1976,1977) has treated the stability 
of two-dimensional arrays using the same approach. 

Although the one-dimensional periodic array treated here is admittedly remote 
from the geometry of clustering in three-dimensional suspensions, nevertheless the 
results are important because they suggest that omission of the reflected flow does 
not lead to serious errors for the stability calculation, provided that most of the 
particles are sufficiently far from bounding surfaces. The same procedures can be used 
to address the stability of dilute three-dimensional arrays. Interparticle colloidal 
repulsive forces that could act  to oppose clustering could be included. The goal would 
be to obtain estimates of the timescale for clustering and the size of the resulting 
clusters as functions of the particle sizes and concentrations. These would be 
important for estimating the overall rate of sedimentation. Inclusion of the return 
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Particle k with 
radius ak centred 
at ( X k ,  Y k .  z k )  

- Image of particle k 
centred at ( x k ,  Y k ,  -zk)  

FIGURE 1. Sketch defining the geometry of spheresj and k near a wall. 

flow would greatly complicate the stability calculation. It now appears unnecessary 
to include the return flow in the stability calculation. 

2. Equations of particle motion 
Consider first a single small sphere designated by the subscript k moving through 

a reservoir of otherwise stagnant fluid bounded by a no-slip surface a t  z = 0. Let ak 
represent the radius of the sphere, (xk ,  y k ,  z k )  the instantaneous position of the 
sphere’s centre, and (Uk, V,, Wk) the instantaneous translational velocity of the 
sphere (see figure 1 ) .  Exact solutions to  the creeping-flow equations for this geometry 
have been given by Brenner (1961),  Maude (1961) and O’Neill (1964) through use of 
spherical bipolar coordinates. However, if ak < zk the following relatively simple 
expressions can be established for the creeping flow induced at a remote point 
(q, y j ,  z j )  by the motion of the sphere centred a t  (xk, y k ,  z k )  : 

ujk = f j k  ‘ k  + g j k  (xj - xk) (xj - x k )  Lrk + (Y j  - Yk)  v k  + - zk) Wkl- hjk zj (xj - xk) w k  > 

( 1 4  

( 1  b )  

+ 5 k  [(Zj - Xk) Zk Uk + (Yj - Y k )  Zk Vk - (zj” + 2 3  Wkl, ( 1 c )  

‘j’k = f j k  ‘k + gjk (Y j  - Yk)  [ - %k) Uk + ( yj - yk)  Vk + (zj - z k )  w k ]  - hjk zj( yj - yk ) Wk, 

wj k = f j k  wk + gjk (zj - z k )  - xk) Uk + ( yj - Y k )  Vk + (zj - zk) Wk] 

where 

7 B L M  132 
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and 

rjk is the distance between the two points. 
Use of the word 'remote' above requires ak 4 rik. The terms in these equations 

inversely proportional to powers of rjk result from application of the point force 

to infinity in all directions; these terms are in fact the limiting form of Stokes' solution 
when a, 4 rjk. The terms in the above set of equations inversely proportional to 
powers of S j k  correct the flow for the presence of the wall. These terms were derived 
by a mirror-image technique due to Lorentz and described by Happel & Brenner 
(1965). The velocity given satisfies exactly the no-slip boundary condition on the 
plane z = 0, but does not satisfy this condition on the surface of the sphere. One very 
important feature of the combined flow field for the present application is the fact 
that this flow decays with the inverse third power of distance from the sphere, whereas 
Stokes' flow decays only as the inverse first power of distance. To the level of accuracy 
considered, the motion of sphere k is resisted by a drag force with components 

(67'C/%Uk uk, 6npak vk, 6Zpak wk) at (xk,  Y k ,  z k )  On the assumption that the fluid extends 

This result is accurate to the first power of ak/zk when this ratio is small. 
Now, suppose that a second small sphere of radius aj is centred at ( x j ,  yj, zj). The 

fluid motion induced by sphere k exerts a drag force on sphere j given as a first 

If there are a number of moving spheres indicated by the running subscript k a t  
different widely spaced positions and moving with different velocities, then the total 
drag force on sphere j by the induced Aows is the sum of such terms. This is a 
consequence of the linearity of the equations of creeping motion and the level of 
approximation adopted for this work. Rotation of the spheres also induces a drag 
force on spherej, but because fluid motion induced by rotation decays one power of 
rjk faster than fluid motion induced by translation, this force is of order ak/rjk times 
that just written and is therefore neglected in view of the smallness of uk/r jk .  

We suppose that sphere j is acted upon by an external force with components 
(<z, $y, <z). If sphere j is caused to move with velocity ( Uj,  4, e.) in response to 
the external force or the induced flows of the other particles, then sphere j will also 
experience a drag force given by (4), but with k replaced byj. In view of the symmetry 
of spherical particles, for creeping-flow conditions there is no coupling between the 
rotation and translation of sphere j even with the presence of the wall. 

In the absence of inertia, Brownian diffusion and interparticle forces, the motion 
of particle j in the presence of other particles and the wall is governed by the equations 

(5 a )  

approximation by (6npak U j k ,  6n,UUk W j k ,  6xpUk W j k )  with (Ujk ,  V j k ,  W j k )  given by (1)-(3). 

The sums are to be made over all particles k except the particlej. Each of the particles 
satisfies a similar set of equations. 
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3. Unperturbed motion of a one-dimensional array 
For the remainder of this paper, we take the spheres to be identical with radius 

a ,  each sphere subject to the identical external force (I?,, Fy, 4). The spheres are 
initially in a periodic array along the x-axis with centre-to-centre spacing between 
adjacent spheres b, and all are the distance h from the z = 0 plane. The dimensionless 
ratios a/b and a /h  are required to be much smaller than unity. Let y represent the 
ratio hlb, which need not be small. If the array maintains its periodicity, then by 
the symmetry of the problem each sphere will have the same velocity ( U ,  V ,  W). We 
proceed now to compute these undisturbed velocities. 

xk = x j + ( k - j ) b  = xj+nb (n  = f l ,  +2,  ...), (6a )  

(6b, c) 

We have 

yk = yj = 0, Zk = 2j = h. 

Substitution into (3 ) ,  ( 2 )  and ( 1 )  gives 

r .  3k = [n2b2]i = bin(, 

sjk = [n2b2 + 4h2]i = b(n2 + 4y2)4, 

and Ujk = (fjk + n2b2gjk) u+ nb2yhjk W, vjk = f j k  v, (9% b )  

(9c) 

The functions rjk, sjk, fjk, g j k  and hjk are seen to be even functions of n. Consequently, 
when (9) are substituted into ( 5 )  and the indicated sums are made over all positive 
and negative integers n, the contributions from W to the force Fz exactly cancel, as 
do the contributions from U to F,. The results are 

wjk = - nb2yhjk c7-f (Ak - 2b2y2hjk) W. 

F, 9a 3a 
-= 1+----y x [2n-'-(n2+4y2)-4 
6npa U 16h 2h 

a 
h - 2y2(n2 +4y2)-i-  nz(n2 + 4y2)-8+ 6n2y2(n2+ 4y2)-g] = 1 +- G,(y), ( 1 0 ~ )  

F, 9a 3a O0 U -= 1+---y x [n - l - (n2+4y2) - i -2y2 (n2+4y2) - i ]  = l+-Gy(y) ,  ( l o b )  
6npa V 16h 2h n - l  h 

F, 9a 3a O0 -= I+----? x [n-l-(n2+4y2)-4 
6npa W 8h 2h 12=1 

U 
-2y2(n2+4y2)-g-24y4(n2+4y2)-%] E 1 + j ,Gz(y). ( 1 O c )  

The terms in the sums G,, G, and G, decrease as nW3, n-5 and nP5 respectively as 
n becomes much greater than y. These infinite sums therefore converge. This is a 
consequence of including the flows reflected from the no-slip wall. Without the 
reflected flows, the terms in each sum would decrease as n-l and the infinite sums 
would diverge. 

The indicated sums were evaluated numerically for a range of y = h/b values. 

7-2 
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h lb  
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

G, 
9 
16 
- 

0.542 
0.423 
0.182 

-0.153 
-0.555 
-1.010 
- 1.509 
- 2.048 
-2.623 
-3.231 
- 10.622 
- 19.582 
- 29.562 
-40.300 
-51.641 
-63.486 
- 75.760 
-88.410 
- 101.384 

G, 
9 
16 
- 

0.562 
0.560 
0.549 
0.520 
0.468 
0.392 
0.294 
0.175 
0.038 

-0.116 
-2.311 
-5.291 
-8.781 
- 12.650 
- 16.821 
-21.243 
-25.880 
- 30.705 
- 35.697 

G, 
9 
8 

1.125 
1.131 
1.154 
1.199 
1.255 
1.308 
1.350 
1.378 
1.389 
1.384 
0.689 

-0.791 
-2.781 
-5.150 
- 7.821 
- 10.743 
- 13.880 
- 17.205 
- 20.698 

Table 1 .  Hydrodynamic factors needed to compute the drag on a sphere in a 
periodic array moving near a wall 

Results are shown in table 1. As y becomes small, Gx, G, and G, approach the limiting 
values of &, 3 and respectively, given by the method of reflections for a single sphere. 
In  this limit the distance between a sphere and the wall is much less than the distance 
between a sphere and the next sphere in the array. Hydrodynamic interactions with 
the wall predominate and the drag forces are larger than that given by Stokes’ law 
because of the extra resistance a t  the wall. 

As we move the array away from the wall by increasing y = h/b, the values of G, 
and Gv decrease. At sufficiently large values of y ,  these values become negative so 
that the drag forces are less than those given by Stokes law. This is because the 
cooperative effect of each particle moving in the wakes of the other particles serves 
to decrease the drag. As might be expected, this cooperative effect is most pronounced 
for the array of particles translating along the line of centres, which explains why 
G, becomes negative at a lower value of y than does G, or G,. The values of G, first 
show a slight increase as y is increased, but then decrease for y greater than 
about 0.9. 

For sufficiently large y = h / b ,  large negative corrections to  Stokes’ law would be 
computed using the values given in table 1 unless a / h  is sufficiently small. Large 
corrections are inconsistent with the restrictions a 4 b and a 4 h. These inequalities 
may be rewritten as a /b  4 y and a /h  4 l / y .  The larger y becomes the smaller a / h  
must become in order for the first reflection only to  give a good approximation for 
the drag forces. Consequently, the present procedure is probably reliable only for 
small corrections to  Stokes’ law. To assess the level of accuracy would require 
retaining higher reflections (i.e. higher powers of a /b  and a / h  than the first). 



Resistance and stability of a transhting line of particles 191 

4. Stability of a one-dimensional array 
We now examine whether the one-dimensional array retains its uniform spacing 

in response to infinitesimal perturbations of position and velocity of each particle. 
Let (ax,, 6yk, 62,) represent the perturbation in position of particle k relative t o  the 
unperturbed position (xy, yy, zj”) of particle j. The superscript 0 indicates evaluation 
a t  the unperturbed position. We take the perturbations to vary sinusoidally along 
the line of centres, there being W L  particles per wave. As is customary with linear 
stability analyses, we also take the perturbations to vary exponentially with time. 
Thus we write 

Xk = Xy+nb+6Xk = xj”+nb+cE,, ( l l a )  

yk = y!+6yk = Yj”+T/En, (1 16)  

Zk = zi” + 62, = zi” + @,, (1 lc )  

U k =  U+SUk = U+PcE,, (12a) 

Vk = V+6vk = v + p q E n ,  (12b) 

w k  = W+6Wk = W+p<E,, ( 1 2 4  

and 

where 

and n = 0 for particle j .  /3 is the amplification factor whose sign and magnitude we 
seek to  determine. If the real part of ,8 is positive, the infinitesimal perturbation grows 
exponentially in time ; if the real part of /3 is negative, the infinitesimal perturbation 
decays exponentially in time. The procedure for determining p is to substitute (1 1 )  
and (12) into the equations of motion ( 5 ) .  The resulting equations are linearized, and 
because ( U ,  V, W) satisfies the equations for the initial periodic array the zeroth-order 
terms cancel. This leaves a set of three linear homogeneous equations for the 
perturbation amplitude ( E ,  q, c),  which constitutes an eigenvalue problem for /3. 

For an array moving normal to the wall, the undisturbed velocity W varies with 
position as shown in $3.  The perturbations introduced in (11) and (12) are about 
undisturbed (time- or position-dependent) positions and velocities. Consequently, 
this calculation examines the stability in time in a coordinate system moving with 
the local undisturbed velocity. Since inertial effects arc completely neglected owing 
to the smallness of the Reynolds number, the acceleration or deceleration of the array 
is unimportant. However, another approximation is implicit. We have treated this 
problem as one that grows in time in a moving coordinate system instead of one where 
disturbances grow in a fixed coordinate system. It is known from other stability 
calculations that the two approaches give equivalent results when the amplification 
achieved over one wavelength is small. The condition for this is pmb/ W < 1 or 
(pb2/aW) (ma/b) 4 1 .  The calculations show that, /3b2/aW is of order unity, so that 
the above inequality will be satisfied if a/b  < l /m.  Our calculations then give the local 
amplification rate for the prevailing position. To find the total amplitude A 
achieved as a function of position one would have to  integrate the equation 
d In A/dt = Wd In A/dz = /3 using the position-dependent values of p and W. 

Because of the complexity of the equations, we have treated as three separate cases 
the situation where the external force is in the x-direction only, the external force 
is in the y-direction only, and the external force is in the z-direction only. We present 
here only the analysis of the third case, it being illustrative of the procedure in general. 

For the constant external force (0, 0, F,) on each particle, the unperturbed velocity 
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is ( O , O ,  W ) .  To the first order in small quantities, the non-zero terms in (5a )  are 

0 = 1 + - 6uj- ~ { f ~ ~ 6 U , + g ~ ~ n 2 b 2 6 U ~ - g ~ ~ n b W ( 6 Z ~ - 6 ~ k ) + h ~ k n b 2 y 6 W ,  ( ::hh) 
- W[h& by(6xj - Sxk) - higc nb6zj 

-nbhj',(6zj-6xk) -5hjq,yn2b(n2+4y2)-1 ( 6 q - 6 ~ ~ )  

+ 1 Oh!, ny2b(n2 + 4y2)  - 1  ( 8zj - 62,)]}. (14) 

Substitute 6Uk = [@En, 6xk = [En,  etc. On making the indicated sums in (14) ,  
contributions for terms involving 6zj  arising from positive n exactly cancel those 
arising from the corresponding negative n.  For the other terms, combining the 
corresponding terms for positive and negative n leads to the factor cos (2nnlm) when 
the coefficients are even functions of n,  and to  the factor sin(2nnlm) when the 
coefficients are odd functions of n. After collecting together those terms proportional 
to [ and separately those terms proportional to 6, (14)  becomes 

where 
9a 3a 
16h 2 b , , ,  

A = 1 +  __-- C [2n-1-(n2+4y2)-? 

m 

B = 18y3 C [ (n2+4y2)-%-5n2(n2+4y2)-f]  
12-1 

m . 2nn 
C =  18y3 Z n(n2+4y2) -%s ln- ,  

m 2xn 
D = 4 C n[n-3- (n2+4y2)- i+  18y2(n2+4y2)-t-120y4(n2+4y2)-z] sin __ m 

m n - 1  

n = 1  

A similar treatment of ( 5 c )  yields 

00 

F=+- 8 '+18y3 Z [3(n2+4y2)-g-20y2(n2+4y2)-i]  
n = 1  

G = -C, 

When ( and 6 are eliminated from (15) and (l6), we obtain a quadratic equation 
for p. 

For the case of the external force in the z-direction only, perturbations in the 
y-direction do not enter into the calculation of the growth factor p. For the other 
two cases, perturbations in all three directions do influence the growth factor; these 
cases also result in quadratic equations for /3, but with different collections of infinite 
sums to be evaluated. All of the infinite sums converge. Even when y+00 and the 
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'1 3 

Number of particles per wave 

FIGURE 2. Dimensionless amplification versus number of particles per wave for 
motion of the array toward a wall. 

array is infinitely far from the wall, i.e. when the flows reflected from the wall are 
neglected in computing the drag forces, the sums remain convergent. This is a 
consequence of the trigonometric functions in the sums. 

Solution of the quadratic equation for each case determines the dimension~~ss 
growth factor Pb2/a W for that case as a function of the two dimensionless ratios a /b  
and y = h/b  and the number m of particles per wave. T o  the level of approximation 
treated here, the dependence of ,8b2/a W on a/b  is neglected; this is equivalent to 
approximating the terms A and E above as unity when a < b and a -g h. 

It is relatively straightforward to show that to this level of approximation, the 
limiting expression €or /? as y becomes infinite is 

for both cases where the array translates normal to the line of centres. This is the 
result given by Crowley (1971). It is therefore clear that Crowley's procedure gives 
correct results for the stability of a sedimenting array far from any boundary, even 
though his approach is incapable of predicting the unperturbed velocity of 
sedimentation. 

Computer programs were developed to evaluate the required sums and to solve the 
quadratic equations giving /3b2/a W as functions of y = h/b  and rn. 
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c 
3 t 

2 3 4 5 6 I 8  9 10 

Number of particles per wave 

FIGURE 3. Dimensionless amplification versus number of particles per wave for 
motion of the array away from a wall. 

When the undisturbed motion is along the line of centres, the array was found to 
be stable for all values of y and for m up to  10. Morrison (1973) showed that a 
one-dimensional array infinitely far from boundaries and translating along its line 
of centres is stable. 

Translation normal to the line of centres is found to  be unstable. Typical results 
for the dimensionless amplification factor /3b2/a W are shown in figures 2, 3 and 4 for 
sedimentation toward the wall, sedimentation away from the wall, and sedimentation 
parallel to the wall respectively. 

For sedimentation toward the wall (see figure 21, the wall is seen to have a 
stabilizing influence on the array. As hlb decreases, the amplification factor decreases 
and instability is confined to a narrower region of wavelengths. No unstable waves 
were found for h/b < 0.9. The trend toward greater stability can be explained as 
follows. If a perturbation causes a given particle to move closer to the wall than the 
array as a whole, its velocity decreases relative to  the velocity of the array as a whole 
because of the increased resistance according to (4) ; the faster-moving array can then 
catch up. with the particle, thereby restoring the uniformity of the array. A similar 
argument holds for perturbations that cause a given particle to  move further from 
the wall than the array as a whole. When a perturbation causes a given particle to 
move laterally from the array, the hydrodynamic interactions with the other particles 
tend to restore the lateral position of that  particle. 
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Number of particles per wave 

FIGURE 4. Dimensionless amplification versus number of particles per wave for 
motion of the array parallel to a wall. 

The wall has a destabilizing influence when sedimentation is away from the wall. 
Figure 3 shows that, as hlb decreases, the amplification factor increases. I n  this case, 
if a perturbation causes a particle to move further from the wall than the array as 
a whole, its velocity increases relative to the array as a whole because of the decreased 
resistance according to  (4) ; this particle will therefore continue to move further and 
further ahead of the array. A similar argument holds for perturbations that cause 
a given particle to move closer to  the wall. 

Figure 4 shows the complex influence of the wall on the stability of an array 
sedimenting parallel to the wall. The wall is stabilizing for longer-wavelength 
disturbances (m 2 6) in that, as h/b decreases, the amplification factor decreases. 
However, for shorter-wavelength disturbances (m < 6) the amplification first increases 
as h/b decreases from a large value, reaches a maximum, and thereafter decreases 
as the wall is approached. The maximum amplification rates for hlb < 0.2 and m = 2 
slightly exceed that for h/b $ 1 ,  which occurs a t  m = 6. The shift of the wavelength 
for maximum amplification to smaller values as the wall is approached can be 
explained as follows. Far from the wall when a perturbation causes a particle to move 
in a given direction, its hydrodynamic interactions with other particles tend to cause 
them to move in the same direction. The perturbation velocities of neighbouring 
particles will therefore be correlated to a certain degree. However, the flow reflected 
from the wall due to the motion of any given particle is to  a large extent opposite 



196 8. L. Goren 

Motion toward wall Motion away from wall Motion parallel to wall 
hlb m = 2  m = 3  m = 6  m = 2  m = 3  m = 6  m = 2  m = 3  m = 6  

1 -0.182 0.074 -0.063 0.972 1.723 3.092 0.749 1.235 1.500 
2 <0.001 0.815 0.899 0.376 1.226 1.973 0.375 1.082 1.553 
5 < 0.001 0.943 1.446 0.150 1.093 1.601 0.150 1.026 1.530 

10 < 0.001 0.978 1.485 0.075 1.053 1.560 0.075 1.018 1.524 
c o o  1.015 1.522 0 1.015 1.522 0 1.015 1.522 

Table 2. Dimensionless amplification factor /3bz/aW or /W/a  V 

in direction to the motion of that particle itself. The reflected flow consequently 
significantly weakens the degree of correlation in perturbation velocities, which 
permits (encourages) more-rapid growth of small-wavelength disturbances. 

Table 2 has been prepared to illustrate the approach of the current results as hlb 
is increased to Crowley’s results, which completely neglect the influence of the wall 
on the stability (i.e. hlb = a). Crowley’s treatment is seen to give reasonably accurate 
results for hlb greater than about 5 for motion normal to the wall and for hlb greater 
than about 2 for motion parallel to the wall provided that m is greater than 2. 
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